(1) selected papers
[45] j.zhang, l. peng, s. wen, s. huang. “a review on concrete structural properties and damage evolution monitoring techniques,” sensors, 2024, 24, 620: 1-29, doi: 10.3390/s24020620.
[44] h. sun, q. feng, j. li, f. zheng, l. peng, s. li, s. huang. “rail web buried defect location and quantification methods in hybrid high-order guided wave detection,” ieee transactions on instrumentation and measurement, 2024, 73: 1-12, doi: 10.1109/tim.2023.3338679.
[43] l. peng, s. li, h. sun and s. huang. “a pipe ultrasonic guided wave signal generation network suitable for data enhancement in deep learning: us-wgan,” energies, 2022, 15(18): 6695, doi: 10.3390/en15186695.[2] l. peng, s. huang, s. wang and w. zhao, “a simplified lift-off correction for three components of the magnetic flux leakage signal for defect detection,” ieee transactions on instrumentation and measurement, 2021, 70: 1-9, doi: 10.1109/tim. 2021.3058407.
[42] l. peng, s. huang, s. wang and w. zhao, “an element-scaling-revising method (esrm) for magnetic flux leakage signal analysis,” international journal of applied electromagnetics and mechanics, 2018, 57(1): 83-92, doi: 10.3233/jae-170128.
[41] l. peng, s. huang, s. wang and w. zhao, “data recovery method for mfl signals based on sinc function for oil & gas pipeline,” ieee sensors 2020. 2020: 1-4, doi: 10.1109/sensors47125.2020.9278657.
[40] l. peng, s. huang, s. wang and w. zhao, “three-dimensional magnetic flux leakage signal analysis and imaging method for tank floor defect,” the journal of engineering, 2018, 17: 1865-1870, doi: 10.1049/joe.2018.8344.
[39] l. peng, s. huang, s. wang and w. zhao, “high precision identification method of fan main shaft defects based on rotating magnetic field detection,” ieee international instrumentation and measurement technology conference, 2021:1-6, doi: 10.1109/i2mtc 50364.2021.9460043.
[38] l. peng, h. sun, s. wang, q. wang, w. zhao and s. huang, “defect detection and identification of point-focusing shear-horizontal emat for plate inspection,” conference on precision electromagnetic measurements, 2020: 1-2, doi: 10.1109/cpem49742.2020. 9191716.
[37] l. peng, s. huang, s. wang and w. zhao, “an element-combination method for arbitrary defect reconstruction from mfl signals,” ieee international instrumentation and measurement technology conference, 2020: 1-6, doi: 10.1109/i2mtc 43012.2020.9128671.
[36] l. peng, s. huang, s. wang and w. zhao, “a simplified calculation model of mfl signal of defect based on lift-off value,” conference on precision electromagnetic measurements, 2020: 1-2, doi: 10.1109/cpem49742.2020.9191696.
[35] l. peng, s. huang, s. wang and w. zhao, “a 3-d pseudo magnetic flux leakage (pmfl) signal processing technique for defect imaging,” ieee international instrumentation and measurement technology conference, auckland, new zealand, 2019: 1-5, doi: 10.1109/i2mtc.2019.8827047.
[34] l. peng, s. huang, q. wang, s. wang and w. zhao, “a lift-off revision method for magnetic flux leakage measurement signal,” conference on precision electromagnetic measurements, paris, 2018: 1-2, doi: 10.1109/i2mtc.2018.8409535.
[33] l. peng, s. huang, s. wang and w. zhao, “the real-time quantitation and display method for incomplete defect mfl signals,” 19th world conference on non-destructive testing, wcndt 2016: 1-10.
[32] s. huang, l. peng, h. sun, q. wang, w. zhao and s. wang, “frequency response of an underwater acoustic focusing composite lens,” applied acoustics, 2021, 173: 1-6, doi: 10.1016/j.apacoust.2020.107692.
[31] s. huang, l. peng, q. wang, s. wang and w. zhao, “an opening profile recognition method for magnetic flux leakage signals of defect,” ieee transactions on instrumentation and measurement, 2019: 68(6): 2229-2236, doi: 10.1109/tim. 2018.2869438.
[30] s. huang, l. peng, s. wang and w. zhao, “a basic signal analysis approach for magnetic flux leakage response,” ieee transactions on magnetics, 2018, 54(10): 1-6, doi: 10.1109/tmag.2018.2858201.
[29] s. huang, l. peng, q. wang, s. wang and w. zhao, “a defect opening profile estimation method based on the right-angle characteristic of vertical component of mfl signal,” conference on precision electromagnetic measurements, 2018: 1-5, doi: 10.1109/cpem.2018.8500976.
[28] h. sun, l. peng, j. lin, s. wang, w. zhao and s. huang, “microcrack defect quantification using a focusing high-order sh guided wave emat: the physics-informed deep neural network guwnet,” ieee transactions on industrial informatics, 2022, 18(5):3235-3247, doi: 10.1109/tii.2021.3105537.
[27] h. sun, l. peng, s. huang, s. li, y. long, s, wang, w. zhao, “development of a physics-informed doubly fed cross-residual deep neural network for high-precision magnetic flux leakage defect size estimation,” ieee transactions on industrial informatics, 2022, 18(3): 1629-1640, doi: 10.1109/tii.2021.3089333.
[26] h. sun, l. peng, s. wang, q. wang, w. zhao and s. huang, “effective focal area dimension optimization of shear horizontal point-focusing emat using orthogonal test method,” ieee transactions on instrumentation and measurement, 2021, 70: 1-8, doi: 10.1109/tim.2021.3073713.
[25] h. sun, l. peng, s. wang, s. huang and k. qu, “development of frequency-mixed point-focusing shear horizontal guided-wave emat for defect inspection using deep neural network,” ieee transactions on instrumentation and measurement, 2021, 70: 1-14, doi: 10.1109/tim.2020.3033941.
[24] h. sun, l. peng, s. huang, q. wang, s. wang and w. zhao, “analytical model and optimal focal position selection for oblique point-focusing shear horizontal guided wave emat,” construction and building materials, 2020: 258: 1-8, doi: 10.1016/j. conbuildmat.2020.120375.
[23] h. sun, l. peng, s. huang, s. wang, q. wang and w. zhao, “mode identification of denoised sh guided waves using variational mode decomposition method,” ieee sensors 2020. 2020: 1-3, doi: 10.1109/sensors47125.2020.9278659.
[22] h. sun, l. peng, s. wang, q. wang, w. zhao and s. huang, “effective focal area dimension optimization of shear-horizontal point-focusing emat using orthogonal test method,” conference on precision electromagnetic measurements, 2020: 1-2, doi: 10.1109/cpem49742.2020.9191861s.
[21] s. huang, h. sun, l. peng, s. wang, q. wang and w. zhao, “defect detection and identification of point-focusing shear-horizontal emat for plate inspection,” ieee transactions on instrumentation and measurement, 2021, 70: 1-9, doi: 10.1109/tim.2021.3062421.
[20] y. long, s. huang, l. peng, s. wang and w. zhao, “a novel compensation method of probe gesture for magnetic flux leakage testing,” ieee sensors journal, 2021, 21(9): 10854-10863, doi: 10.1109/jsen.2021.3059899.
[19] y. long, s. huang, l. peng, s. wang and w. zhao, “a characteristic approximation approach to defect opening profile recognition in magnetic flux leakage detection,” ieee transactions on instrumentation and measurement, 2021: 70: 1-12, doi: 10.1109/tim.2021.3050185.
[17] y. long, s. huang, l. peng, w. wang, s. wang and w. zhao, “internal and external defects discrimination of pipelines using composite magnetic flux leakage detection,” ieee international instrumentation and measurement technology conference, 2021: 1-6, doi: 10.1109/i2mtc50364.2021.9460069.
[16] y. long, s. huang, l. peng, s. wang and w. zhao, “a new dual magnetic sensor probe for lift-off compensation in magnetic flux leakage detection,” ieee international instrumentation and measurement technology conference, 2020: 1-6, doi: 10.1109/i2mtc43012.2020.9129204.
[15] y. long, s. huang, l. peng, s. wang and w. zhao, “a characteristic approximation approach to defect edge detection in magnetic flux leakage testing,” conference on precision electromagnetic measurements, 2020: 1-2, doi: 10.1109/ cpem49742.2020.9191752.
[14] w. wang, s. huang, l. peng, y. long, s. wang and w. zhao, “an improved mfl method fusing multi-space magnetic field information for the surface defect inspecting,” ieee international instrumentation and measurement technology conference, 2021, pp. 1-6, doi: 10.1109/i2mtc50364.2021.9460085.
[13] w. wang, s. huang, l. peng, s. wang and w. zhao, “identifying surface defect opening profiles based on the uniform magnetic field distortion,” ieee international instrumentation and measurement technology conference, 2020: 1-6, doi: 10.1109/i2mtc43012.2020.9129184.
[12] y. long, j. zhang, s. huang, l. peng, w. wang, s. wang, w. zhao, "a novel crack quantification method for ultra-high-definition magnetic flux leakage detection in pipeline inspection," ieee sensors journal, 2022, 22(16): 16402-16413, doi: 10.1109/jsen.2022.3190684.
[11] h. sun, s. wang, s. huang, l. peng, q. wang and w. zhao, “design and characterization of an acoustic composite lens with high-intensity and directionally controllable focusing,” scientific reports, 2020, 10: 1469, doi: 10.1038/s41598-020-58092-6.
[10] h. sun, s. wang, s. huang, l. peng, q. wang, w. zhao and jun zou, “point-focusing shear-horizontal guided wave emat optimization method using orthogonal test theory,” ieee sensors journal, 2020, 20(12): 6295-6304, doi: 10.1109/ jsen.2020.2976198.
[9] h. sun, s. wang, s. huang, l. peng, q. wang and w. zhao, “oblique point-focusing shear-horizontal guided-wave electromagnetic acoustic transducer with variable ppm spacing,” ieee transactions on ultrasonics, ferroelectrics, and frequency control, 2020, 67(8): 1691-1700, doi: 10.1109/tuffc.2020.2980621.
[8] h. sun, s. wang, s. huang, l. peng, q. wang and w. zhao, “3d focusing acoustic lens optimization method using multi-factor and multi-level orthogonal test designing theory,” applied acoustics, 2020, 170: 107538, doi: 10.1016/j.apacoust. 2020.107538.
[7] s. wang, s. huang, q. wang, l. peng and w. zhao, “accelerated optimizations of an electromagnetic acoustic transducer with artificial neural networks as metamodels,” journal of sensors an sensor systems, 2017, 6(2): 269-284, doi: 10.5194/jsss-6-269-2017.
[6] s. huang, h. sun, s. wang, k. qu, w. zhao and l. peng, “sswt and vmd linked mode identification and time-of-flight extraction of denoised sh guided waves,” ieee sensors journal, 2021, 21(13): 14709-14717, doi: 10.1109/jsen.2021.3051658.
[5] l. miu, f. pan, l. peng and s. huang, “iterative optimization method of defect depth profile based on depth characteristics of mfl signal”, proceedings of the csee, 2022, 42(8): 3077-3086, doi: 10.13334/j.0258-8013.pcsee.211252. (in chinese)
[4] h. sun, l. peng, k. qu, s. wang, w. zhao and s. huang, “application and prospect of machine learning in ultrasonic testing of composite insulator defects”, nondestructive testing,2021,43(05):58-63. (in chinese)
[3] s. huang, l. peng, w. zhao and s. wang, “overview of defect magnetic flux leakage imaging technology”, transactions of china electrotechnical society, 2016, 31(20): 55-63, doi: 10.19595/j.cnki.1000-6753.tces. 2016.20.005. (in chinese)
[2] l. peng, s. wang, h. liu, s. huang and w. zhao, “improved gray-color transform method for mfl images”, journal of tsinghua university (science and technology), 2015, 55(5): 592-596, doi: 10.16511/j.cnki.qhdxxb.2015.05.018. (in chinese)
[1] l. peng, s. huang, w. zhao and s. wang, “defect reconstruction method for magnetic flux leakage testing”, electrical measurement and instrumentation, 2015, 52(13): 1-6; 30. (in chinese)
(2) selected patants
[1] songling huang, lisha peng, zijing huang. automatic magnetic flux leakage identification method and device for pipe spiral welds. chinese patent of invention, zl 202011197381.9, 2022.07.01.
[2] songling huang, lisha peng, wei zhao, shen wang, jun zou, fuping wang, yue long, lin gui, jiarui dong, xinjie yu, zijing huang. inversion method of defect contour based on magnetic flux leakage signal. chinese patent of invention, zl 20181035458 9.3, 2021.01.01.
[3] songling huang, lisha peng, wei zhao, shen wang, di cheng, jia yu. unit expansion method for constructing magnetic flux leakage signal of defects. chinese patent of invention, zl 201710174668.1, 2020.06.19.
[4] songling huang, lisha peng, wei zhao, shen wang, xinjie yu, jiarui dong, fuping wang. a method to solve magnetic flux leakage signal of defects based on depth lift off transform. chinese patent of invention, zl 201710976832.0, 2020.04.07.
[5] songling huang, lisha peng, wei zhao, shen wang, shisong li, jun zou. defect contour recognition method of pseudo 3d mfl signal based on normal component. chinese patent of invention, zl 201710784842.4, 2019.11.22.
[6] songling huang, lisha peng, wei zhao, shen wang, yue long. magnetic spiral array imaging method and detection device for steel plate defects. chinese patent of invention, zl 201710516071.0, 2019.10.29.
[7] songling huang, lisha peng, wei zhao, yu zhang, shen wang. a method for solving the vertical magnetization direction of magnetic flux leakage signal. chinese patent of invention, zl 201710252452.2, 2019.07.26.
[8] songling huang, lisha peng, wei zhao, shen wang, yue long. a method for solving magnetic flux leakage signals of defects based on combination of prime signals. chinese patent of invention, zl 201710681267.5, 2019.11.22.
[9] songling huang, lisha peng, wei zhao, shen wang, xinjie yu, shisong li. method and device for defect contour recognition based on vertical component of magnetic flux leakage signal. chinese patent of invention, zl 201710686539.0, 2019.11.22.
[10] songling huang, wei zhao, lisha peng, shen wang, di cheng, jiarui dong. method for reconstructing defect. us patent of invention, us 10,935,520 b2, 2021.03.02
[11] songling huang, wenzhi wang, lisha peng, wei zhao, shen wang, jinghua zhang. device and method for detecting defect contour with omnidectionally equal sensitivity based on magnetic excitation. us patent of invention, us 11,150,311 b2, 2021.10.19.
[12] songling huang, wei zhao, shen wang, lisha peng, yu zhang, xinjie yu, jun zou, lin gui, fuping wang. high-precision imaging and detecting device for detecting small defect of pipeline by helical magnetic matrix. us patent of invention, us 10,338,160 b2, 2019.07.02.
[13] songling huang, wei zhao, shen wang, xinjie yu, lisha peng, jun zou, fuping wang, jiarui dong, lin gui, yue long. method and device for detecting and evaluating defect. us patent of invention, us 11,099,156 b2, 2021.08.24.