1. y. yang, y. wu, x. ding, and p. zhang, “a novel thermal management method for enhancing the consistency of igbt heat stress in converter,” ieee trans. ind. electron., vol. 70, no. 10, pp. 10628–10638, oct. 2023, doi: 10.1109/tie.2022.3222685.
2. q. zhang and p. zhang, “a novel model of the aging effect on the on-state resistance of sic power mosfets for high-accuracy package-related aging evaluation,” ieee trans. ind. electron., vol. 70, no. 9, pp. 9495–9504, sep. 2023, doi: 10.1109/tie.2022.3212405.
3. q. zhang, g. lu, y. yang, and p. zhang, “a high-frequency online junction temperature monitoring method for sic mosfets based on on-state resistance with aging compensation,” ieee trans. ind. electron., vol. 70, no. 7, pp. 7393–7405, jul. 2023, doi: 10.1109/tie.2022.3204948.
4. t. meng and p. zhang, “an online rotor flux estimation technique based on intermittent stator de-energization for rotor temperature estimation of permanent magnet machines,” ieee trans. power electron., vol. 38, no. 6, pp. 7697–7710, jun. 2023, doi: 10.1109/tpel.2023.3249780.
5. y. yang, y. wu, x. ding, and p. zhang, “online junction temperature estimation method for sic mosfets based on the dc bus voltage undershoot,” ieee trans. power electron., vol. 38, no. 4, pp. 5422–5431, apr. 2023, doi: 10.1109/tpel.2023.3235729.
6. q. zhang and p. zhang, “a novel junction temperature balance control method for typical three-phase converters based on a hybrid modulation strategy,” ieee trans. power electron., vol. 38, no. 3, pp. 3917–3927, mar. 2023, doi: 10.1109/tpel.2022.3225930.
7. q. zhang, y. yang, and p. zhang, “a novel online chip-related aging monitoring method for igbts based on the leakage current,” ieee trans. ind. electron., vol. 70, no. 2, pp. 2003–2014, feb. 2023, doi: 10.1109/tie.2022.3163516.
8. t. meng and p. zhang, “an online dc-link capacitance estimation method for motor drive systems based on an intermittent reverse-charging control strategy,” ieee trans. power electron., vol. 38, no. 2, pp. 2481–2492, feb. 2023, doi: 10.1109/tpel.2022.3211314.
9. y. wu, y. yang, q. lin, q. zhang, and p. zhang, “online monitoring for underground power cable insulation based on resonance frequency analysis under chirp signal injection,” ieee trans. ind. electron., vol. 70, no. 2, pp. 1961–1972, feb. 2023, doi: 10.1109/tie.2022.3159922.
10. g. lu, q. zhang, d. zheng, s. mirsaeidi, and p. zhang, “detection and location approach to incipient grounding defect in transformer winding based on sequence voltage ratios at pv inverter switching frequency,” ieee trans. ind. electron., vol. 70, no. 6, pp. 6337–6346, jun. 2023, doi: 10.1109/tie.2022.3199923.
11. y. yang, x. ding, and p. zhang, “a novel junction temperature estimation method independent of bond wire degradation for igbt,” ieee trans. power electron., pp. 1–13, 2023, doi: 10.1109/tpel.2023.3274126.
12. q. zhang and p. zhang, “a junction temperature smoothing control method for sic mosfets based on the gate driving signal delay,” ieee trans. ind. electron., pp. 1–10, 2023, doi: 10.1109/tie.2023.3270530.
13. d. zheng, g. lu, y. wu, q. zhang, and p. zhang, “online detection and classification of inter-turn and groundwall insulation ageing based on broadband common-mode impedance spectrum,” ieee trans. ind. electron., pp. 1–12, 2023, doi: 10.1109/tie.2023.3265024.
14. q. zhang, g. lu, and p. zhang, “a high-sensitivity online junction temperature monitoring method for sic mosfets based on the turn-on drain–source current overshoot,” ieee trans. power electron., vol. 37, no. 12, pp. 15505–15516, dec. 2022, doi: 10.1109/tpel.2022.3186977.
15. y. wu and p. zhang, “a novel online monitoring scheme for underground power cable insulation based on common-mode leakage current measurement,” ieee trans. ind. electron., vol. 69, no. 12, pp. 13586–13596, dec. 2022, doi: 10.1109/tie.2022.3142434.
16. g. lu, q. zhang, d. zheng, and p. zhang, “a novel online monitoring strategy for the localized grounding insulation defect of converter transformers based on converter switching states control,” ieee trans. power electron., vol. 37, no. 9, pp. 11124–11134, sep. 2022, doi: 10.1109/tpel.2022.3152670.
17. p. zhang, d. zheng, and g. lu, “the effect and compensation of phase angle deviation along the winding for the online stator insulation condition monitoring,” ieee trans. ind. electron., vol. 69, no. 8, pp. 8440–8451, aug. 2022, doi: 10.1109/tie.2021.3108730.
18. y. wu, y. yang, z. wang, and p. zhang, “online monitoring for underground power cable insulation based on common-mode signal injection,” ieee trans. ind. electron., vol. 69, no. 7, pp. 7360–7371, jul. 2022, doi: 10.1109/tie.2021.3102410.
19. d. zheng, g. lu, and p. zhang, “an improved online stator insulation monitoring method based on common-mode impedance spectrum considering the effect of aging position,” ieee trans. on ind. applicat., vol. 58, no. 3, pp. 3558–3566, may 2022, doi: 10.1109/tia.2022.3160131.
20. y. yang and p. zhang, “a novel converter-level igbt junction temperature estimation method based on the bus voltage ringing,” ieee trans. power electron., vol. 37, no. 4, pp. 4553–4563, apr. 2022, doi: 10.1109/tpel.2021.3119700.
21. g. lu, d. zheng, q. zhang, and p. zhang, “effects of converter harmonic voltages on transformer insulation ageing and an online monitoring method for interlayer insulation,” ieee trans. power electron., vol. 37, no. 3, pp. 3504–3514, mar. 2022, doi: 10.1109/tpel.2021.3118020.
22. y. wu and p. zhang, “online monitoring for power cables in dfig-based wind farms using high-frequency resonance analysis,” ieee trans. sustain. energy, vol. 13, no. 1, pp. 378–390, jan. 2022, doi: 10.1109/tste.2021.3113017.
23. y. yang and p. zhang, “in situ junction temperature monitoring and bond wire detecting method based on igbt and fwd on-state voltage drops,” ieee trans. on ind. applicat., vol. 58, no. 1, pp. 576–587, jan. 2022, doi: 10.1109/tia.2021.3130215.
24. g. lu, d. zheng, and p. zhang, “an advanced wideband model and a novel multitype insulation monitoring strategy for vsc-connected transformers based on common-mode impedance response,” ieee trans. ind. electron., vol. 69, no. 1, pp. 879–889, jan. 2022, doi: 10.1109/tie.2021.3051597.
25. t. meng and p. zhang, “a review of thermal monitoring techniques for radial permanent magnet machines,” machines, vol. 10, no. 1, p. 18, dec. 2021, doi: 10.3390/machines10010018.
26. y. wu, p. zhang, and g. lu, “detection and location of aged cable segment in underground power distribution system using deep learning approach,” ieee trans. ind. inf., vol. 17, no. 11, pp. 7379–7389, nov. 2021, doi: 10.1109/tii.2021.3056993.
27. q. zhang and p. zhang, “an online junction temperature monitoring method for sic mosfets based on a novel gate conduction model,” ieee trans. power electron., vol. 36, no. 10, pp. 11087–11096, oct. 2021, doi: 10.1109/tpel.2021.3072436.
28. y. yang and p. zhang, “in situ insulated gate bipolar transistor junction temperature estimation method via a bond wire degradation independent parameter turn-off v ce overshoot,” ieee trans. ind. electron., vol. 68, no. 10, pp. 10118–10129, oct. 2021, doi: 10.1109/tie.2020.3022526.
29. d. zheng, g. lu, and p. zhang, “a noninvasive interturn insulation condition monitoring method based on the common-mode impedance spectrum of inverter-fed machines,” ieee trans. on ind. applicat., vol. 57, no. 5, pp. 4786–4795, sep. 2021, doi: 10.1109/tia.2021.3094176.
30. y. yang and p. zhang, “a novel bond wire fault detection method for igbt modules based on turn-on gate voltage overshoot,” ieee trans. power electron., vol. 36, no. 7, pp. 7501–7512, jul. 2021, doi: 10.1109/tpel.2020.3047135.
31. y. wu and p. zhang, “common-mode (cm) current sensor node design for distribution grid insulation monitoring framework based on multi-objective optimization,” ieee trans. ind. inf., vol. 17, no. 6, pp. 3836–3846, jun. 2021, doi: 10.1109/tii.2020.3014995.
32. g. lu and p. zhang, “a novel leakage-current-based online insulation monitoring strategy for converter transformers using common-mode and differential-mode harmonics in vsc system,” ieee trans. ind. electron., vol. 68, no. 2, pp. 1636–1645, feb. 2021, doi: 10.1109/tie.2020.2972447.
33. y. yang, q. zhang, and p. zhang, “a fast igbt junction temperature estimation approach based on on-state voltage drop,” ieee trans. on ind. applicat., vol. 57, no. 1, pp. 685–693, jan. 2021, doi: 10.1109/tia.2020.3030753.
34. d. zheng and p. zhang, “an online groundwall and phase-to-phase stator insulation monitoring method for inverter-fed machine,” ieee trans. ind. electron., vol. 68, no. 6, pp. 5303–5313, jun. 2021, doi: 10.1109/tie.2020.2988218.
35. “open ecosystem for future industrial internet of things (iiot): architecture and application,” csee jpes, mar. 2020, doi: 10.17775/cseejpes.2019.01810.
36. g. lu, y. wu, and p. zhang, “analytical analysis and design of an advanced differential-mode current sensor for insulation monitoring for industrial electrical assets,” ieee access, vol. 8, pp. 151360–151370, 2020, doi: 10.1109/access.2020.3015763.
37. y. yang and p. zhang, “study on the influence of inconsistent valve parameters on lcc-hvdc commutation and operation,” ieee access, vol. 7, pp. 109015–109025, 2019, doi: 10.1109/access.2019.2933752.
38. zhang, pinjia, prabhakar neti, and sam salem. “electrical discharge and its impact on drivetrains of wind turbines.” ieee transactions on industry applications 51.6 (2015): 5352-5357.
39. pinjia zhang; neti, p., “detection of gearbox bearing defects using electrical signature analysis for doubly fed wind generators,” in industry applications, ieee transactions on , vol.51, no.3, pp.2195-2200, may-june 2015
40. pinjia zhang; younsi, k.; neti, p., “a novel online stator ground-wall insulation monitoring scheme for inverter-fed ac motors,” in industry applications, ieee transactions on , vol.51, no.3, pp.2201-2207, may-june 2015
41. pinjia zhang; yi du; habetler, t.g.; bin lu; , “a nonintrusive winding heating method for induction motor using soft starter for preventing moisture condensation,” industry applications, ieee transactions on , vol.48, no.1, pp.117-123, jan.-feb. 2012
42. cheng, s.; du, y.; restrepo, j.; zhang, p.; habetler, t.; , “a nonintrusive thermal monitoring method for induction motors fed by closed-loop inverter drives,” power electronics, ieee transactions on , vol.pp, no.99, pp.1, 2012
43. pinjia zhang; yi du; habetler, t.g.; bin lu; , “magnetic effects of dc signal injection on induction motors for thermal evaluation of stator windings,” industrial electronics, ieee transactions on , vol.58, no.5, pp.1479-1489, may 2011
44. cheng, s.; zhang, p.; habetler, t.g.; , “an impedance identification approach to sensitive detection and location of stator turn-to-turn faults in a closed-loop multiple-motor drive,” industrial electronics, ieee transactions on , vol.58, no.5, pp.1545-1554, may 2011
45. pinjia zhang; yi du; habetler, t.g.; bin lu; , “a survey of condition monitoring and protection methods for medium-voltage induction motors,” industry applications, ieee transactions on , vol.47, no.1, pp.34-46, jan.-feb. 2011
46. pinjia zhang; yi du; habetler, t.g.; bin lu; , “improving thermal recovery time for soft-starter-connected ac motors with intermittent periodic duty cycles,” industry applications, ieee transactions on , vol.46, no.5, pp.1927-1935, sept.-oct. 2010
47. pinjia zhang; yi du; habetler, t.g.; “a transfer-function-based thermal model reduction study for induction machine thermal overload protective relays,” industry applications, ieee transactions on , vol.46, no.5, pp.1919-1926, sept.-oct. 2010
48. pinjia zhang; bin lu; habetler, t.g.; , “an active stator temperature estimation technique for thermal protection of inverter-fed induction motors with considerations of impaired cooling detection,” industry applications, ieee transactions on , vol.46, no.5, pp.1873-1881, sept.-oct. 2010
49. p. zhang, y. du, b. lu, and t. g. habetler, “a dc signal injection based thermal protection scheme for soft-starter connected induction motors,” ieee trans. on industrial applications, vol. 45, pp. 1351-1358, 2009.
50. p. zhang, y. du, j. dai, t. g. habetler, and b. lu, “impaired cooling condition detection using dc signal injection for soft-starter-connected induction motors,” ieee trans. on industrial electronics, vol.56, no.11, pp.4642-4650, nov. 2009